Abstract

The excessive proliferation and migration of synoviocytes are well-characterized phenomena that play key roles in the pathophysiology of rheumatoid arthritis (RA). Melatonin has been shown to have potent anti-proliferative effect in various cancer cells such as breast and prostate cancer cells. In this study, we examined the role of melatonin on synoviocyte proliferation in primary cultured human fibroblast-like synoviocytes (FLSs) by analyzing protein expression of P21(CIP1) (P21) and P27(KIP1) (P27), the cyclin-dependent kinase inhibitors that are important in cell cycle control, and the phosphorylation of mitogen-activated protein kinases (MAPKs). RA-FLS proliferation was determined by a [(3)H]-thymidine incorporation assay. Western blot analysis was applied to examine the underlying mechanisms of melatonin's effect. Melatonin inhibited RA-FLS proliferation in a dose-dependent manner. It reduced proliferation of passage 2 FLSs by 25% at 10 microm and by nearly 40% at 100 microm concentrations. The inhibitory effect of melatonin on RA-FLS proliferation was also observed in passages 4 and 6. Melatonin upregulated the expression levels of P21 and P27 dose-dependently (24 hr), induced the phosphorylation of extracellular signal-regulated protein kinase (ERK) time-dependently (10 microm), but did not affect phosphorylation of P38 in RA-FLSs. In addition, the expression of P21 and P27 triggered by melatonin was inhibited by the pretreatment of the ERK inhibitor, PD98059 (10 microm). The anti-proliferative action of melatonin in RA-FLSs was also blocked by PD98059. Taken together, these results suggest that melatonin exerts the inhibitory effect of the proliferation of RA-FLSs through the activation of P21 and P27 mediated by ERK. Hence we suggest that melatonin could be used as a therapeutic agent for the treatment of RA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call