Abstract
We tested the hypothesis that melatonin regulates formation of 6-hydroxydopamine (6-OHDA) in the brain and thereby protects animals from dopaminergic neurotoxicity and the development of parkinsonism in animals. Employing a ferrous-ascorbate-dopamine (FAD) hydroxyl radical ((*)OH) generating system, in the present study we demonstrate a dose-dependent attenuation of 6-OHDA generation by melatonin in vitro. Intra-median forebrain bundle infusion of FAD caused significant depletion of striatal dopamine (DA), which was blocked by melatonin. Per-oral administration of l-3,4-dihydroxyphenylalanine (L-DOPA) for 7 days caused a dose-dependent increase in the formation of 6-OHDA in the mouse striatum, which was increased synergistically by the systemic administration of the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the 7th day of L-DOPA treatment. Melatonin treatment significantly attenuated both the L-DOPA and MPTP-induced increases in the levels of striatal 6-OHDA, and protected against striatal DA depletion caused by the neurotoxin. These observations suggest a novel mode of melatonin-induced dopaminergic neuroprotection in two models of Parkinson's disease, and suggest the possible therapeutic use of this well-known antioxidant indoleamine neurohormone in parkinsonism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.