Abstract

In previous studies, we have shown that mitochondrial respiratory chain (MRC) activity is decreased in patients with nonalcoholic steatohepatitis and in ob/ob mice and that peroxynitrite plays a pathogenic role. The present study examined whether melatonin, a peroxynitrite scavenger, prevents: (i) the in vitro effects of peroxynitrite on normal mitochondrial proteins and (ii) the development of nonalcoholic liver disease, MRC dysfunction and proteomic changes found in the mitochondrial complexes from ob/ob mice. We studied MRC activity, assembly of mitochondrial complexes and its subunits in normal mitochondrial proteins exposed to peroxynitrite in the absence and presence of melatonin. The same studies were done in mitochondrial proteins from ob/ob mice untreated and treated with melatonin. Preincubation of mitochondrial proteins from wild-type mice with melatonin prevented 3-tyrosine nitration of these proteins, eliminated the reduction in the MRC activity, the defect in the assembly of mitochondrial complexes and degradation of their subunits induced by peroxynitrite in vitro. Moreover, treatment of ob/ob mice with 10 mg/kg/day melatonin for 12 wk reduced oxidative and nitrosative stress, prevented the loss of MRC activity, protected their complexes and subunits from degradation, and favored assembling of mitochondrial complexes. In addition, this treatment improved fatty liver, decreased hepatic triglyceride concentration and increased apolipoprotein B100 in liver tissue. In conclusion, melatonin prevents the effects of peroxynitrite on mitochondrial proteins in vitro and administration of melatonin to ob/ob mice normalizes liver morphology, mitochondrial dysfunction and assembly of MRC complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.