Abstract

Melatonin, an indolic pineal hormone, is produced primarily at night in mammals and is important in controlling biological rhythms. Previous research suggested that melatonin can attenuate proliferation in the estrogen-responsive MCF-7 breast cancer cell line. We tested whether these anti-proliferative effects may have physiological consequences upon two estrogen-responsive cell lines, MCF-7 (a breast cancer cell line) and BG-1 (an ovarian adenocarcinoma cell line). Melatonin (10(-9)-10(-5) M) attenuated proliferation of MCF-7 and BG-1 cells by >20% in the absence of estrogen. However, 17beta-estradiol exposure negated the ability of melatonin to inhibit proliferation. To substantiate this finding, cells were estrogen starved followed by multiple treatments with estradiol and melatonin. Melatonin did not inhibit estradiol-stimulated proliferation under this protocol. Estradiol increased MCF-7 and BG-1 cell cycle transition from G1 to S phase, however, melatonin did not inhibit this transition nor did it down-regulate estradiol-induced pS2 mRNA levels measured by northern blotting, further indicating that melatonin was unable to attenuate estradiol-induced proliferation and gene expression. We also examined the effects of melatonin on estradiol-induced proliferation in MCF-7 cell xenografts in athymic nude mice. Melatonin at a dose 28 times greater than 17beta-estradiol did not inhibit estradiol-induced proliferation in vivo. Furthermore, pinealectomy did not increase proliferation. Therefore, we conclude that melatonin does not directly inhibit estradiol-induced proliferation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call