Abstract

Reactive oxygen species (ROS) trigger and accelerate leaf senescence. Melatonin, a low molecular compound with several biological functions in plants, is known to delay leaf senescence in different species, including Chinese flowering cabbage. However, the mechanism(s) underpinning melatonin-delayed leaf senescence remains unclear. Here, we found that melatonin lowered the expression of chlorophyll catabolic genes (BrPAO and BrSGR1) and senescence-associated genes (BrSAG12 and BrSEN4), decreased chlorophyll loss, minimized the alteration in Fv/Fm ratio and remarkably delayed senescence of Chinese flowering cabbage after harvest. Moreover, the over-accumulation of O2•-, hydrogen peroxide (H2O2) and malondialdehyde contents and the expression of respiratory burst oxidase homologues (RBOH) genes (BrRbohB, BrRbohC, BrRbohD, BrRbohD2 and BrRbohE) were significantly inhibited by melatonin treatment. Melatonin-treated cabbages also showed higher O2•-, OH• and DPPH radical scavenging capacity and enhanced activities of peroxidase (POD), superoxide dismutase (SOD) and their gene expressions. Up-regulation of key components of ascorbate–glutathione (AsA-GSH) cycle, the metabolic pathway that detoxify H2O2, was also observed in melatonin-treated cabbages. These findings suggest that melatonin-delayed postharvest leaf senescence of postharvest Chinese flowering cabbage may be mediated, at least in part, by maintaining ROS homeostasis through restraining RBOHs-catalyzed ROS production and enhancing the activity of ROS-scavenging system including major antioxidant enzymes and AsA-GSH cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.