Abstract

The aim of the present study was to evaluate the radioprotective effects of melatonin on the biomechanical properties of bone in comparison to amifostine (WR-2721). Forty Sprague Dawley rats were divided equally into 5 groups namely; control (C), irradiation (R; single dose of 50Gy), irradiation + WR-2721 (R + WR-2721; irradiation + 200mg/kg WR-2721) radiation + melatonin 25mg/kg (R + M25; irradiation + 25mg/kg melatonin), and radiation + melatonin 50mg/kg (R + M50; irradiation + 50mg/kg melatonin). In order to measure extrinsic (organ-level mechanical properties of bone; the ultimate strength, deformation, stiffness, energy absorption capacity) and intrinsic (tissue-level mechanical properties of bone; ultimate stress, ultimate strain, elastic modulus, toughness) features of the bone, a three-point bending (TPB) test was performed for biomechanical evaluation. In addition, a bone mineral density (BMD) test was carried out. The BMD and extrinsic properties of the diaphyseal femur were found to be significantly higher in the R + M25 group than in group R (p < 0.05). A significant increase was observed in R + M50 (p < 0.05) in comparison to group R in the cross-sectional area of the femoral shaft and elastic modulus parameter. The protective effect of melatonin was similar to that of WR-2721. Thus, biomechanical quality of irradiated bone can be ameliorated by free radical scavenger melatonin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call