Abstract

Melatonin protects against transient middle cerebral artery (MCA) occlusion and may be suited as an add-on therapy of tissue plasminogen activator (t-PA) thrombolysis. Herein, we examined whether melatonin would reduce postischemic increase in the blood-brain barrier (BBB) permeability and, therefore, attenuate the risk of hemorrhagic transformation after t-PA therapy in experimental stroke. Twelve mice were subjected to transient occlusion of the MCA for 1 hr, followed by 24 hr of reperfusion. Melatonin (5 mg/kg, i.p.) or vehicle was given at the beginning of reperfusion. BBB permeability was evaluated by quantitation of Evans Blue leakage. An additional 32 mice underwent photothrombotic occlusion of the distal MCA, and were administered vehicle or t-PA (10 mg/kg, i.v.), alone or in combination with melatonin (5 mg/kg, i.p.), at 6 hr postinsult. The animals were then killed after 24 hr for the determination of infarct and hemorrhage volumes. Relative to controls, melatonin-treated animals had significantly reduced BBB permeability (by 52%; P < 0.001). Additionally, we found that at 6 hr after photo-irradiation, either t-PA or melatonin, or a combined administration of t-PA plus melatonin, did not significantly affect brain infarction (P > 0.05), compared with controls. Mice treated with t-PA alone, however, had significantly increased hemorrhagic formation (P < 0.05), and the event was effectively reversed by co-treatment with melatonin (P < 0.05). Thus, melatonin improved postischemic preservation of the BBB permeability and a decreased risk of adverse hemorrhagic transformation after t-PA therapy for ischemic stroke. The findings further highlight melatonin's potential role in the field of thrombolytic treatment for ischemic stroke patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.