Abstract

Carnation is one of the most important ornamental plants worldwide; however, heat stress is a problem, which affects carnation cultivation. The harmful effects of heat stress include impaired vegetative development and reduced floral induction. In this study, to enhance carnation growth under conditions of heat stress, various concentrations of melatonin were added to in vitro culture media. The mechanism by which melatonin reduced heat stress damage was then studied by taking measurements of morphological parameters, levels of reactive oxygen species (ROS), antioxidant enzymes, and malondialdehyde (MDA), as well as differential gene expression, in carnation plants during in vitro culture. These data revealed that untreated carnation plants were more harmed by conditions of heat stress than plants treated with melatonin. Melatonin at concentrations of 5 and 10 mM increased chlorophyll content, fresh weight, and plant height to a greater extent than other concentrations. Melatonin may, thus, be used to alleviate damage to carnations caused by heat stress. The application of melatonin was also found to reduce oxidative damage and enhance antioxidant defense mechanisms. In addition, the expression of heat-related genes was found to be upregulated; in melatonin-treated plants, an upregulation was recorded in the expression of GAPDH, DcPOD1, DcPOD2, DcPOD3, Gols1, MBF1c, HSF30, HSP101, HSP70, and sHSP (MT) genes. In short, we found that melatonin treatment increased heat tolerance in carnation plants. The data presented here may serve as a reference for those seeking to enhance the growth of plants in conditions of heat stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call