Abstract

Melatonin was found to have a small inhibitory effect on tyrosinase activity and a slight stimulatory action on dopachrome tautomerase activity in B16 mouse melanoma cells. These effects were time and dose dependent, with the maximal response being observed after 24-48 h treatment and at concentrations of melatonin higher than the physiologic levels of the circulating hormone. Although these effects on the melanogenic activities were modest, incubation of melanocytes with melatonin prior to the addition of the melanotropin mediated a dramatic inhibition of alpha-melanocyte-stimulating-hormone-(alpha-MSH)-induced melanogenesis. This inhibitory effect was evident at melatonin concentrations as low as 10 nM. Inhibition was nearly total at 0.1 mM melatonin, even at high concentrations of alpha-MSH (1 microM). The inhibitory effect of melatonin on alpha-MSH stimulation of melanogenesis was investigated. Melatonin appeared to act at least at two stages. Pharmacological concentrations of melatonin diminished the number of alpha-MSH receptors to about 75% of the control values without an apparent effect on receptor affinity, as determined by receptor-binding studies using 125I-[N-Leu4-D-Phe7]alpha-MSH as a probe. Physiological concentrations of melatonin also appeared to interfere with the intracellular events coupling increased cAMP levels and induction of the c locus tyrosinase, since it strongly inhibited the theophylline-mediated stimulation of melanogenesis. The inhibition of tyrosinase stimulation was higher in the microsomal than in the melanosomal fractions of cells which were treated with melatonin, then exposed to either alpha-MSH (1 microM) or theophylline (1 mM), suggesting that one of the main effects of melatonin might be inhibition of the induction of tyrosinase de novo synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.