Abstract
Klebsiella pneumoniae is a Gram-negative bacterium and the causative agent of several life-threatening nosocomial infections, including pneumonia. K. pneumoniae induces acute lung injury and inflammation in humans that require immediate hospitalization and treatment. Therefore, attenuation of K. pneumoniae-induced inflammation is necessary for the survival of patients. This study investigated the mechanisms by which melatonin abrogated K. pneumoniae-induced inflammation and apoptosis of lung cell lines, HLF-1 and BEAS-2B. Our results showed that in vitro infection of HLF-1 and BEAS-2B cells by K. pneumoniae significantly induced inflammation and apoptosis increased elevated levels of IL-6, CXCL1, CXCL2, and caspase-9 mRNA. However, these effects were abrogated by melatonin treatment. Infection with K. pneumoniae significantly increased the expression of AMP-induced protein kinase (AMPK). Furthermore, AMPK silencing significantly abrogated the suppression of inflammation and apoptosis in melatonin-infected K. pneumoniae lung cells. Melatonin could alleviate K. pneumoniae infection-induced inflammation in three-dimensional lung spheroids. In conclusion, our study demonstrated that melatonin abrogated K. pneumoniae-induced inflammation and apoptosis in lung cells through AMPK. Our study demonstrated the potential of melatonin for therapy against K. pneumoniae infections including pneumonia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.