Abstract
Endoplasmic reticulum (ER) stress has been identified as a primary factor involved in brain ischemia-reperfusion injury progression. p21-activated kinase 2 (Pak2) is a novel ER function regulator. The aim of our study is to explore the influence of Pak2 on ER stress and determine whether melatonin attenuates ER stress-mediated cell death by modulating Pak2 expression in vitro using N2a cells. The results of our study demonstrated that hypoxia-reoxygenation (HR) injury repressed the levels of Pak2, an effect that was accompanied by activation of ER stress. In addition, decreased Pak2 was associated with oxidative stress, calcium overload, and caspase-12-mediated apoptosis activation in HR-treated N2a cells. Interestingly, melatonin treatment reversed the decreased Pak2 expression under HR stress. Knockdown of Pak2 abolished the protective effects of melatonin on ER stress, oxidative stress, and caspase-12-related N2a cells death. Additionally, we found that Pak2 was regulated by melatonin via the AMPK pathway; inhibition of AMPK prevented melatonin-mediated Pak2 upregulation, a result that was accompanied by an increase in N2a cell death. Altogether, these results identify the AMPK-Pak2 axis as a new signaling pathway responsible for ER stress and N2a cell viability under HR injury. Modulation of the AMPK-Pak2 cascade via supplementation of melatonin might be considered an effective approach to attenuate reperfusion-mediated N2a cell damage via repression of ER stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.