Abstract

Melatonin (MLT) is an endogenous indole compound with numerous biological activities that has been associated with atherosclerosis (AS). In the present study, rabbits were used as an AS model in order to investigate whether MLT affects endothelial cell permeability, myosin light chain kinase (MLCK) activity and MLCK expression via the mitogen-activated protein kinase (MAPK) pathway. Expression and activity of MLCK were measured using western blot analysis, quantitative polymerase chain reaction, immunohistochemistry and γ-32P-adenosine triphosphate incorporation. Endothelial permeability was detected using rhodamine phalloidin fluorescence staining. The phosphorylation of extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 in endothelial cells were also analyzed using western blot analysis. Atheromatous plaques were formed in rabbits with a high cholesterol diet; however, following treatment with MLT, the number and areas of atheromatous plaques were significantly reduced. In addition, MLT treatment reversed the increase of MLCK activity and expression that occurred in rabbits with high cholesterol intake. Furthermore, levels of phosphorylated ERK, JNK and p38 decreased following MLT treatment. In conclusion, the results of the present study indicated that AS may be associated with increased MLCK expression and activity, which was reduced following treatment with MLT. The mechanism of action of MLT was thought to proceed via modulating MAPK pathway signal transduction; however, further studies are required in order to fully elucidate the exact regulatory mechanisms involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.