Abstract

ABSTRACT Pyroptosis has pivotal parts within disease development, rendering this attractive mechanism for novel therapeutics. This investigation aimed at analyzing melatonin roles within pyroptosis together with related mechanistics. RLE-6TN cultures were exposed to varying LPS doses for 4.5 h followed by concomitant culturing in the presence of ATP (5 mM) for 0.5 h to induce injury, and the roles of melatonin, N-Acety-L-cysteine (NAC – a ROS scavenger), ML385 (specific Nrf2 inhibitor) were examined. Apoptosis analysis was performed through lactate dehydrogenase (LDH) activity assays, together with propidium iodide (PI) stain-assay. Intracellular ROS were quantified through 2, 7-dichlorodihydrofluorescein diacetate (DCFH-DA). Pyrolysis-associated proteins, such as nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), cysteine aspartate-specific protease-1 P20 (Caspase-1 P20), gasdermin D-N (GSDMD-N), and mature interleukin-1β (IL-1β), were identified through Western blotting. Dataset outcomes demonstrated LPS/ATP induce RLE-6TN cell pyroptosis, while melatonin alleviated this phenomenon, visualized through increased cell survival rate, reduction of LDH discharge and PI+ cellular count. Moreover, melatonin effectively reduced NLRP3 inflammasome triggering in RLE-6TN cells. Meanwhile, this study demonstrated melatonin thwarting over NLRP3 inflammasome triggering was depending on ROS. In addition, this study found that melatonin activated Nrf2/Heme Oxygenase-1 (HO-1) pathway, with pyroptotic-inhibiting function of melatonin was reverted through a bespoke Nrf2-inhibitor and siNrf2. In summary, this study concluded that melatonin prevents RLE-6TN cellular pyroptosis through Nrf2-triggered ROS downregulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.