Abstract

The transfer of melanin from melanocytes to keratinocytes is upregulated by UV radiation and modulated by autocrine and paracrine factors. Among them, the keratinocyte growth factor (KGF/FGF7) promotes melanosome transfer acting on the recipient keratinocytes through stimulation of the phagocytic process. To search for possible differences in the melanosome uptake of keratinocytes from different skin color, we analyzed the uptake kinetics and distribution pattern of fluorescent latex beads in primary cultures of light and dark skin-derived keratinocytes stimulated with KGF and we compared the direct effect of KGF on the melanosome transfer in co-cultures of human primary melanocytes with light and dark keratinocytes. KGF-promoted melanosome transfer was more significant in light keratinocytes compared to dark, due to an increased expression of KGF receptor in light skin keratinocytes. Colocalization studies performed by confocal microscopy using FITC-dextran as a phagocytic marker and fluorescent beads as well as inhibition of particle uptake by cytochalasin D, revealed that beads internalization induced by KGF occurs via actin-dependent phagocytosis. 3D image reconstruction by fluorescence microscopy and ultrastructural analysis through transmission electron microscopy showed differences in the distribution pattern of the beads in light and dark keratinocytes, consistent with the different melanosome distribution in human skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.