Abstract

Since the identification of self-renewing cells in the hematopoietic system, stem cells have transformed the study of medicine. Cancer biologists have identified stem-like cells in multiple malignancies, including those of solid organs. This has led to the development of a stem cell theory of cancer, which purports that a subpopulation of self-renewing tumor cells is responsible for tumorigenesis. This contrasts with the stochastic model of tumor development, which advances that all tumor cells are capable of tumor formation. Within the field of melanoma, the identity and existence of cancer stem cells has been the subject of recent debate. Much of the controversy may be traced to differences in interpretations and definitions related to the cancer stem cell theory, and the use of dissimilar methodologies to study melanoma cells. Accumulating evidence suggests that cancer stem cells may exist in melanoma, although their frequency may vary and they may be capable of phenotypic plasticity. Importantly, these primitive melanoma cells are not only capable of self-renewal and differentiation plasticity, but also may confer virulence via immune evasion and multidrug resistance, and potentially via vasculogenic mimicry and transition to migratory and metastasizing derivatives. Therapeutic targeting of melanoma stem cells and the pathways that endow them with virulence hold promise for the design of more effective strategies for amelioration and eradication of this most lethal form of skin cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call