Abstract

The initial assessment of skin lesions is typically based on dermoscopic images. As this is a difficult and time-consuming task, machine learning methods using dermoscopic images have been proposed to assist human experts. Other approaches have studied electrical impedance spectroscopy (EIS) as a basis for clinical decision support systems. Both methods represent different ways of measuring skin lesion properties as dermoscopy relies on visible light and EIS uses electric currents. Thus, the two methods might carry complementary features for lesion classification. Therefore, we propose joint deep learning models considering both EIS and dermoscopy for melanoma detection. For this purpose, we first study machine learning methods for EIS that incorporate domain knowledge and previously used heuristics into the design process. As a result, we propose a recurrent model with state-max-pooling which automatically learns the relevance of different EIS measurements. Second, we combine this new model with different convolutional neural networks that process dermoscopic images. We study ensembling approaches and also propose a cross-attention module guiding information exchange between the EIS and dermoscopy model. In general, combinations of EIS and dermoscopy clearly outperform models that only use either EIS or dermoscopy. We show that our attention-based, combined model outperforms other models with specificities of 34:4% (CI 31:3-38:4), 34:7% (CI 31:0-38:8) and 53:7% (CI 50:1-57:6) for dermoscopy, EIS and the combined model, respectively, at a clinically relevant sensitivity of 98 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.