Abstract

Mouse melanocortin receptors, MC1-R, MC3-R, MC4-R, and MC5-R, when expressed in HEK293 cells and stimulated with either alpha-melanocyte-stimulating hormone (alpha-MSH) or desacetyl-alpha-MSH, mediate increases in intracellular free calcium concentration ([Ca(2+)](i)) with EC(50) values between 0.3 and 4.3 nM. The increase in [Ca(2+)](i) is cholera toxin sensitive and pertussis toxin insensitive. The mechanism involves calcium mobilization from intracellular stores without a transient rise in inositol trisphosphate. Mouse agouti protein (55 nM) is a competitive antagonist of alpha-MSH (6-fold) and desacetyl-alpha-MSH (8-fold), coupling the mMC1-R to increased [Ca(2+)](i). Agouti protein (55 nM) significantly increased the EC(50) for alpha-MSH (3-fold), and 550 nM agouti protein significantly increased the EC(50) for desacetyl-alpha-MSH (4-fold), coupling the mMC4-R to a rise in [Ca(2+)](i). However, agouti protein antagonism of the MC4-R may not be competitive since there was a trend for the maximum response to also increase. There was no significant antagonism of the MC3-R and MC5-R by agouti protein (55 nM). Understanding the physiological relevance of the transduction of a calcium signal by melanocortin peptides may be important for future development of therapeutic targeting of the melanocortin receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call