Abstract

Melanocortin 4 receptor (Mc4r) plays a crucial role in the central control of energy homeostasis, but its role in peripheral organs has not been fully explored. We have investigated the roles of hypothalamus-mediated energy metabolism during Xenopus limb regeneration. We report that hypothalamus injury inhibits Xenopus tadpole limb regeneration. By loss-of-function and gain-of-function studies, we show that Mc4r signaling is required for limb regeneration in regeneration-competent tadpoles and stimulates limb regeneration in later-stage regeneration-defective tadpoles. It regulates limb regeneration through modulating energy homeostasis and ROS production. Even more interestingly, our results demonstrate that Mc4r signaling is regulated by innervation and α-MSH substitutes for the effect of nerves in limb regeneration. Mc4r signaling is also required for mouse digit regeneration. Thus, our findings link vertebrate limb regeneration with Mc4r-mediated energy homeostasis and provide a new avenue for understanding Mc4r signaling in the peripheral organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.