Abstract

Reward and energy homeostasis are both regulated by a network of hypothalamic neuropeptide systems. The melanin-concentrating hormone (MCH) and its MCH-1 receptor (MCH1-R) modulate alcohol intake, but it remains unknown to what extent this reflects actions on energy balance or reward. Here, we evaluated the MCH1-R in regulation of caloric intake and motivation to consume alcohol in states of escalated consumption. Rats had intermittent access (IA) to alcohol and were divided into high- and low-drinking groups. Food and alcohol consumption was assessed after administration of an MCH1-R antagonist, GW803430. Next, GW803430 was evaluated on alcohol self-administration in protracted abstinence induced by IA in high-drinking rats. Finally, the effect of GW803430 was assessed on alcohol self-administration in acute withdrawal in rats exposed to alcohol vapor. Gene expression of MCH and MCH1-R was measured in the hypothalamus and nucleus accumbens (NAc) in both acute and protracted abstinence. High-drinking IA rats consumed more calories from alcohol than chow and GW803430 decreased both chow and alcohol intake. In low-drinking rats, only food intake was affected. In protracted abstinence from IA, alcohol self-administration was significantly reduced by pretreatment with GW803430 and gene expression of both MCH and the MCH1-R were dysregulated in hypothalamus and NAc. In contrast, during acute withdrawal from vapor exposure, treatment with GW803430 did not affect alcohol self-administration, and no changes in MCH or MCH1-R gene expression were observed. Our data suggest a dual role of MCH and the MCH1-R in regulation of alcohol intake, possibly through mechanisms involving caloric intake and reward motivation. A selective suppression of alcohol self-administration during protracted abstinence by GW803430 was observed and accompanied by adaptations in gene expression of MCH and MCH1-R. Selective suppression of escalated consumption renders the MCH1-R an attractive target for treatment of alcohol use disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call