Abstract
A new method has been developed for the preparation of brightly fluorescent and stable DNA-silver nanoclusters (DNA-AgNCs). The approach takes advantage of specific interactions occurring between melamine and thymine residues in a DNA template. These interactions cause the formation of a melamine-DNA-AgNC complex (Mel-DNA-AgNCs), in which a change in the environment of the DNA template causes binding of additional Ag+ and an enhancement in the fluorescence efficiency and stability. The effects of the nature of the template DNA, DNA : Ag+ : NaBH4 ratio, pH and temperature were systematically assessed in order to maximize the melamine-promoted fluorescence enhancement. The results show that the Mel-DNA-AgNCs, generated under the optimal conditions, exhibit a ca. 3-fold larger fluorescence efficiency and long-term stability (70 d) in contrast to those of DNA-AgNCs in the absence of melamine. Importantly, the bright and stable Mel-DNA-AgNCs exhibit antimicrobial activities against Gram-positive and Gram-negative bacteria that are superior to those of DNA-AgNCs alone. To the best of our knowledge, this is the first report describing the synthesis of DNA-AgNCs that have improved fluorescence efficiencies and that function as effective antimicrobial agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.