Abstract

In this paper we study nonlinear time-varying perturbations of an autonomous vector field in the plane R 2 {R^2} . We assume that the unperturbed equation, i.e. the given vector field has a homoclinic orbit and we present a generalization of the Melnikov method which allows us to show that the perturbed equation has a transversal homoclinic trajectory. The key to our generalization is the concept of the Melnikov transform, which is a linear transformation on the space of perturbation functions. The appropriate dynamical setting for studying these perturbation is the concept of a skew product flow. The concept of transversality we require is best understood in this context. Under conditions whereby the perturbed equation admits a transversal homoclinic trajectory, we also study the dynamics of the perturbed vector field in the vicinity of this trajectory in the skew product flow. We show the dynamics near this trajectory can have the exotic behavior of the Bernoulli shift. The exact description of this dynamical phenomenon is in terms of a flow on a fiber bundle, which we call, the Bernoulli bundle. We allow all perturbations which are bounded and uniformly continuous in time. Thus our theory includes the classical periodic perturbations studied by Melnikov, quasi periodic and almost periodic perturbations, as well as toroidal perturbations which are close to quasi periodic perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.