Abstract
Speech recognition technology makes human contact with the computer more accessible. There are two phases in the speaker recognition process: capturing or extracting voice features and identifying the speaker's voice pattern based on the voice characteristics of each speaker. Speakers consist of men and women. Their voices are recorded and stored in a computer database. Mel Frequency Cepstrum Coefficients (MFCC) are used at the voice extraction stage with a characteristic coefficient of 13. MFCC is based on variations in the response of the human ear's critical range to frequencies (linear and logarithmic). The sound frame is converted to Mel frequency and processed with several triangular filters to get the cepstrum coefficient. Meanwhile, at the speech pattern recognition stage, the speaker uses an artificial neural network (ANN) Madaline model (many Adaline/ which is the plural form of Adaline) to compare the test sound characteristics. The training voice's features have been inputted as training data. The Madaline Neural Network training is BFGS Quasi-Newton Backpropagation with a goal parameter of 0,0001. The results obtained from the study prove that the Madaline model of artificial neural networks is not recommended for identification research. The results showed that the database's speech recognition rate reached 61% for ten tests. The test outside the database was rejected by only 14%, and 84% refused testing outside the database with different words from the training data. The results of this model can be used as a reference for creating an Android-based real-time system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JOIV : International Journal on Informatics Visualization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.