Abstract

Stimulator of interferon genes (STING) agonists are currently in development for treatment of solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Response rates to STING agonists alone have been promising yet modest, and combination therapies will likely be required to elicit their full potency. We sought to identify combination therapies and mechanisms that augment the tumor cell-intrinsic effect of therapeutically relevant STING agonists apart from their known effects on tumor immunity. We screened 430 kinase inhibitors to identify synergistic effectors of tumor cell death with diABZI, an intravenously administered and systemically available STING agonist. We deciphered the mechanisms of synergy with STING agonism that cause tumor cell death in vitro and tumor regression in vivo. We found that MEK inhibitors caused the greatest synergy with diABZI and that this effect was most pronounced in cells with high STING expression. MEK inhibition enhanced the ability of STING agonism to induce type I IFN-dependent cell death in vitro and tumor regression in vivo. We parsed NFκB-dependent and NFκB-independent mechanisms that mediate STING-driven type I IFN production and show that MEK signaling inhibits this effect by suppressing NFκB activation. Our results highlight the cytotoxic effects of STING agonism on PDAC cells that are independent of tumor immunity and that these therapeutic benefits of STING agonism can be synergistically enhanced by MEK inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.