Abstract

Black holes are important astrophysical objects describing an end state of stellar evolution, which are observed frequently. There are theoretical predictions that Kerr black holes with high spins expel magnetic fields. However, Kerr black holes are pure vacuum solutions, which do not include accretion disks, and additionally previous investigations are mainly limited to weak magnetic fields. We prove for the first time in full general relativity that generic rapidly spinning black holes including those deformed by accretion disks still expel even strong magnetic fields. Analogously to a similar property of superconductors, this is called Meissner effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.