Abstract

In our previous work [N. G\"urlebeck, M. Scholtz, Phys. Rev. D 95 064010 (2017)], we have shown that electric and magnetic fields are expelled from the horizons of extremal, stationary and axially symmetric uncharged black holes; this is called the Meissner effect for black holes. Here, we generalize this result in several directions. First, we allow that the black hole carries charge, which requires a generalization of the definition of the Meissner effect. Next, we introduce the notion of almost isolated horizons, which is weaker than the usual notion of isolated horizons, since the geometry of the former is not necessarily completely time-independent. Moreover, we allow the horizon to be pierced by strings, thereby violating the usual assumption on the spherical topology made in the definition of the weakly isolated horizon. Finally, we spell out in detail all assumptions entering the proof and show that the Meissner effect is an inherent property of black holes even in full non-linear theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call