Abstract
MEIS1 is a transcription factor expressed in hematopoietic stem and progenitor cells and in mature megakaryocytes. This biphasic expression of MEIS1 suggests that the function of MEIS1 in stem cells is distinct from its function in lineage committed cells. Mouse models show that Meis1 is required for renewal of stem cells, but the function of MEIS1 in human hematopoietic progenitor cells has not been investigated. We show that two MEIS1 splice variants are expressed in hematopoietic progenitor cells. Constitutive expression of both variants directed human hematopoietic progenitors towards a megakaryocyte-erythrocyte progenitor fate. Ectopic expression of either MEIS1 splice variant in common myeloid progenitor cells, and even in granulocyte-monocyte progenitors, resulted in increased erythroid differentiation at the expense of granulocyte and macrophage differentiation. Conversely, silencing MEIS1 expression in progenitor cells induced a block in erythroid expansion and decreased megakaryocytic colony formation capacity. Gene expression profiling revealed that both MEIS1 splice variants induce a transcriptional program enriched for erythroid and megakaryocytic genes. Our results indicate that MEIS1 expression induces lineage commitment towards a megakaryocyte-erythroid progenitor cell fate in common myeloid progenitor cells through activation of genes that define a megakaryocyte-erythroid-specific gene expression program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.