Abstract
Autonomous chromosomes are generated in yeast (yeast artificial chromosomes) and human fibrosarcoma cells (human artificial chromosomes) by introducing purified DNA fragments that nucleate a kinetochore, replicate, and segregate to daughter cells. These autonomous minichromosomes are convenient for manipulating and delivering DNA segments containing multiple genes. In contrast, commercial production of transgenic crops relies on methods that integrate one or a few genes into host chromosomes; extensive screening to identify insertions with the desired expression level, copy number, structure, and genomic location; and long breeding programs to produce varieties that carry multiple transgenes. As a step toward improving transgenic crop production, we report the development of autonomous maize minichromosomes (MMCs). We constructed circular MMCs by combining DsRed and nptII marker genes with 7–190 kb of genomic maize DNA fragments containing satellites, retroelements, and/or other repeats commonly found in centromeres and using particle bombardment to deliver these constructs into embryogenic maize tissue. We selected transformed cells, regenerated plants, and propagated their progeny for multiple generations in the absence of selection. Fluorescent in situ hybridization and segregation analysis demonstrated that autonomous MMCs can be mitotically and meiotically maintained. The MMC described here showed meiotic segregation ratios approaching Mendelian inheritance: 93% transmission as a disome (100% expected), 39% transmission as a monosome crossed to wild type (50% expected), and 59% transmission in self crosses (75% expected). The fluorescent DsRed reporter gene on the MMC was expressed through four generations, and Southern blot analysis indicated the encoded genes were intact. This novel approach for plant transformation can facilitate crop biotechnology by (i) combining several trait genes on a single DNA fragment, (ii) arranging genes in a defined sequence context for more consistent gene expression, and (iii) providing an independent linkage group that can be rapidly introgressed into various germplasms.
Highlights
Agricultural crops have the potential to meet escalating global demands for affordable and sustainable production of food, fuels, therapeutics, and biomaterials [1]
We characterized the behavior of Maize Minichromosome 1 (MMC1) through four generations, showing that it is efficiently inherited and that the genes it carries are expressed
While our study did not explore the interactions between maize minichromosome (MMC) DNA inserts and kinetochore or spindle proteins, we hereafter refer to these fragments as ‘‘centromeric,’’ based on the typical genomic location of the sequences they contain
Summary
Agricultural crops have the potential to meet escalating global demands for affordable and sustainable production of food, fuels, therapeutics, and biomaterials [1]. Zinc finger–mediated homologous recombination or site-specific recombination could eliminate the unpredictable expression that results from random insertion into the plant genome [6,7]. Combining binary T-DNA elements with bacterial artificial chromosome (BAC) technology to produce BiBACs has the potential to introduce larger DNA fragments into the host genome [8,9]. In contrast to these systems, the maize minichromosomes described here remain separate from the host chromosomes, and provide an alternative approach with important benefits. Precise integration into host chromosomes has long been a routine technique in Saccharomyces cerevisiae, the facile properties of autonomous
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.