Abstract

Meiosis halves diploid chromosome numbers to haploid levels that are essential for sexual reproduction in most eukaryotes. Meiotic recombination ensures the formation of bivalents between homologous chromosomes (homologs) and their subsequent proper segregation. It also results in genetic diversity among progeny that influences evolutionary responses to selection. Moreover, crop breeding depends upon the action of meiotic recombination to rearrange elite traits between parental chromosomes. An understanding of the molecular mechanisms that drive meiotic recombination is important for both fundamental research and practical applications. This review emphasizes advances made during the past 5 years, primarily in Arabidopsis and rice, by summarizing newly characterized genes and proteins and examining the regulatory mechanisms that modulate their action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.