Abstract

We have analysed the level of accumulation of alpha- and beta-tubulin polypeptides in flowers collected from different meiotic mutants of alfalfa (Medicago sativa L.). The H33 mutant previously identified as a producer of male and female gametes with the somatic chromosome number (2n gametes) as a result of defective spindle orientation or, more rarely, abnormal cytokinesis, showed a higher level of alpha- and beta-tubulin compared to control diploid plants and approximately the same level as control tetraploid plants. A higher level of tubulin was likewise observed in diploid plants displaying abnormalities in spindle orientation and cytokinesis, which had gone through 3-4 cycles of phenotypic recurrent selection to increase 2n gamete production. A similar analysis was performed on another class of Medicago meiotic mutants characterized by production of 4n pollen (jumbo pollen, due to the absence of cytokinesis at the end of meiosis) and 2n eggs. Again, the level of alpha- and beta-tubulin was found to be higher in the mutants than in diploid controls. We conclude that meiotic defects, such as abnormal spindle orientation or cytokinesis leading to the formation of 2n gametes, determine an increased level of tubulin, the main constituent of plant microtubules (MTs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call