Abstract
BackgroundWith female multiple mating (polyandry), male-male competition extends to after copulation (sperm competition). Males respond to this selective pressure through physiological, morphological and behavioural adaptations. Sperm competitiveness is commonly decreased in heterozygote carriers of male meiotic drivers, selfish genetic elements that manipulate the production of gametes in males. This might give carriers an evolutionary incentive to reduce the risk of sperm competition. Here, we explore this possibility in house mice. Natural populations frequently harbour a well-characterised male driver (t haplotype), which is transmitted to 90 % of heterozygous (+/t) males’ offspring. Previous research demonstrated strong detrimental effects on sperm competitiveness, and suggested that +/t males are particularly disadvantaged against wild type males when first-to-mate. Low paternity success in the first-to-mate role is expected to favour male adaptations that decrease the risk of sperm competition by preventing female remating. Genotype-specific paternity patterns (sperm precedence) could lead to genetically determined alternative reproductive tactics that can spread through gene level selection. Here, we seek confirmation that +/t males are generally disadvantaged when first-to-mate and address whether males of different genotypes differ in reproductive tactics (copulatory and morphological) to maximise individual or driver fitness. Finally, we attempt to explain the mechanistic basis for alternative sperm precedence patterns in this species.ResultsWe confirmed that +/t males are weak sperm competitors when first to mate. When two +/t males competed, the second-to-mate was more successful, which contrasts with first male sperm precedence when wild type males competed. However, we found no differences between male genotypes in reproductive behaviour or morphology that were consistent with alternative reproductive tactics.Sperm of +/+ and +/t males differed with respect to in vitro sperm features. Premature hypermotility in +/t males’ sperm can potentially explain why +/t males are very weak sperm competitors when first-to-mate.ConclusionsOur results demonstrate that meiotic drivers can have strong effects on sperm precedence patterns, and may provide a heritable basis for alternative reproductive tactics motivated by reduced sperm competitiveness. We discuss how experimental and evolutionary constraints may help explain why male genotypes did not show the predicted differences.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0710-4) contains supplementary material, which is available to authorized users.
Highlights
IntroductionWith female multiple mating (polyandry), male-male competition extends to after copulation (sperm competition)
With female multiple mating, male-male competition extends to after copulation
We address the possibility of alternative reproductive tactics in +/t and +/+ males by observing copulatory behaviour and assessing investment into different male reproductive organs that account for the production of ejaculate components and scent marks
Summary
With female multiple mating (polyandry), male-male competition extends to after copulation (sperm competition). Males respond to this selective pressure through physiological, morphological and behavioural adaptations. Sperm competitiveness is commonly decreased in heterozygote carriers of male meiotic drivers, selfish genetic elements that manipulate the production of gametes in males. This might give carriers an evolutionary incentive to reduce the risk of sperm competition. Genotype-specific paternity patterns (sperm precedence) could lead to genetically determined alternative reproductive tactics that can spread through gene level selection. Males may attempt to reduce the risk of sperm competition by guarding females [1]. More investment into mate guarding is predicted with last male precedence [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.