Abstract

Meiotic recombination ensures faithful segregation of homologous chromosomes during meiosis and generates genetic diversity in gametes. MEIOB (meiosis specific with OB domains), a meiosis-specific single-stranded DNA-binding homolog of replication protein A1 (RPA1), is essential for meiotic recombination. Here, we investigated the molecular mechanisms of MEIOB by characterizing its binding partners spermatogenesis associated 22 (SPATA22) and RPA. We find that MEIOB and SPATA22 form an obligate complex and contain defined interaction domains. The interaction between these two proteins is unusual in that nearly any deletion in the binding domains abolishes the interaction. Strikingly, a single residue D383 in MEIOB is indispensable for the interaction. The MEIOB/SPATA22 complex interacts with the RPA heterotrimeric complex in a collaborative manner. Furthermore, MEIOB and SPATA22 are recruited to induced DNA double-strand breaks (DSBs) together but not alone. These results demonstrate the cooperative property of the MEIOB-SPATA22 complex in its interaction with RPA and recruitment to DSBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call