Abstract

ABSTRACT Meiosis within fruiting bodies of Coprinus lagopus Fr. is closely synchronized. This conveniently facilitates joint light- and electron-microscope observations. Before nuclear fusion the chromatin appears diffuse in the light microscope; after nuclear fusion individual chromosomes can be recognized. In the electron micrographs the chromatin of pre-fusion and early fusion nuclei cannot be recognized as denned structures with the fixation and staining procedures employed. At the time of synapsis the lateral components of the synaptinemal complexes can be seen in the micrographs. The pairing process of the two chromosomes of the homologous pairs is believed to involve two steps: (1) two homologous chromosomes become aligned in parallel, and (2) pairing occurs by formation of the synaptinemal complex including the central synaptic component. The term synaptic centre is coined for the central component, which is believed to be the zone where crossing-over occurs. The formation of this structure in relation to homologous pairing, and the structural organization of the synaptinemal complexes are discussed. At meiotic metaphase, the chromosomes congregate around the central spindle microtubules. They are contracted and contain densely packed chromatin fibrils. Two types of spindle microtubules are demonstrated: (1) the chromosomal microtubules directly connecting the chromosomes to the centrosomes, and (2) the central spindle microtubules connecting the two centrosomes. The centrosomes are round, fibril-containing bodies approximately 0-3 fi in diameter. They have been observed outside the nuclear envelope at pachytene, but do not show the characteristic structure normally found in animal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.