Abstract

This study presents the world’s largest series of over 20,000 oocytes tested for aneuploidies, involving chromosomes 13,16, 18, 21 and 22, providing the data on the rates and types of aneuploidies and their origin. Almost every second oocyte (46.8%) is abnormal, with predominance of extra chromatid errors predicting predominance of trisomies (53%) over monosomies (26%) in the resulting embryos (2:1), which is opposite to monosomy predominance observed in embryo testing. Of the detected anomalies in oocytes, 40% are complex, so testing for a few most prevalent chromosome errors may allow detection of the majority of abnormal embryos. Chromosome 21 and 22 errors are more prevalent, while two different patterns of error origin were observed for different chromosomes: chromosome 16 and 22 errors originate predominantly from meiosis II, compared with chromosome 13, 18 and 21 errors originating from meiosis I. This provides the first evidence for the differences in the aneuploid embryo survival depending on the meiotic origin. Considering the problem of mosaicism, which is the major limitation of the cleavage-stage testing, the direct oocyte aneuploidy testing by polar body analysis may be of obvious practical value in improving accuracy and reliability of avoiding aneuploid embryos for transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call