Abstract

The FER locus of the mouse encodes two mRNA species: one is constitutively transcribed, giving rise to a 94 kDa tyrosine kinase (p94ferT); the second is a meiosis-specific RNA that gives rise to a 51 kDa tyrosine kinase (p51ferT). The p51ferT RNA and protein accumulate in primary spermatocytes that are in prophase of the first meiotic division. By using polyclonal antibodies directed against synthetic peptides derived from the unique amino-terminus of the mouse p51ferT, a 51 kDa phosphotyrosyl protein --p51y-- was identified in Saccharomyces cerevisiae. The p51y protein is constitutively expressed in yeast, but in meiotic cells, concomitantly with commitment to meiotic recombination, its level of phosphorylation on tyrosine residues is increased. A different pattern of phosphorylation is observed on serine residues: at early meiotic times the level is decreased, while in later meiotic time the level increases, reaching the vegetative level. When p51ferT is ectopically expressed in yeast, it is active, leading to preferential phosphorylation of an approx. 65 kDa protein. A similar pattern of phosphorylation by p51ferT is seen in mammalian cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.