Abstract

AbstractEin genaues Verständnis der Faktoren, welche die Lumineszenzlebensdauer von Übergangsmetallverbindungen bestimmen, ist für Anwendungen in der Photokatalyse und der photodynamischen Therapie von entscheidender Bedeutung. Die im Falle von [Ru(bpy)3]2+ (bpy=2,2’‐Bipyridin) allgemein akzeptierte Theorie besagt, dass die Emissionslebensdauer durch Optimierung der Energiebarriere zwischen dem emittierenden Triplett‐Zustand des Metall‐Liganden‐Ladungstransfers (3MLCT) und dem thermisch aktivierten Triplett‐Zustand des Metall‐Zentrums (3MC), oder der Energielücke zwischen beiden Zuständen gesteuert werden kann. Hier zeigen wir, dass dies nicht allgemeingültig ist. Darüber hinaus demonstrieren wir, dass die Betrachtung eines einzelnen Relaxationspfades, der vom energetisch niedrigsten Minimum aus bestimmt wird, zu falschen Vorhersagen der temperaturabhängigen Emissionslebensdauer führt. Stattdessen erhalten wir eine ausgezeichnete Übereinstimmung mit den experimentellen temperaturabhängigen Lebensdauern, wenn ein erweitertes kinetisches Modell herangezogen wird, welches alle Pfade im Zusammenhang mit mehreren Jahn–Teller‐Isomeren und ihren effektiven Reaktionsbarrieren beinhaltet. Diese Konzepte sind für das Design weiterer lumineszierender Übergangsmetallkomplexe mit individuell angepassten Emissionslebensdauern auf der Grundlage theoretischer Vorhersagen unerlässlich.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call