Abstract

Aberrant DNA methylation is closely associated with various diseases, particularly cancer, and its precise detection plays an essential role in disease diagnosis and monitoring. In this study, we present a novel DNA methylation detection method (namely meHOLMES), which integrates both the TET2/APOBEC-mediated cytosine deamination step and the CRISPR-Cas12a-based signal readout step. TET2/APOBEC efficiently converts unmethylated cytosine to uracil, which is subsequently changed to thymine after PCR amplification. Utilizing a rationally designed crRNA, Cas12a specifically identifies unconverted methylated cytosines and generates detectable signals using either fluorescent reporters or lateral flow test strips. meHOLMES quantitatively detects methylated CpG sites with or without Protospacer Adjacent Motif (PAM) sequences in both artificial and real biological samples. In addition, meHOLMES can complete the whole detection process within 6 h, which is much faster than traditional bisulfite-based sample pre-treatment method. Above all, meHOLMES provides a simpler, faster, more accurate, and cost-effective approach for quantitation of DNA methylation levels in a sequence-independent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.