Abstract
We give 2 widest Mehler's formulas for the univariate complex Hermite polynomials , by performing double summations involving the products and . They can be seen as the complex analogues of the classical Mehler's formula for the real Hermite polynomials. The proof of the first one is based on a generating function giving rise to the reproducing kernel of the generalized Bargmann space of level m. The second Mehler's formula generalizes the one appearing as a particular case of the so‐called Kibble‐Slepian formula. The proofs we present here are direct and more simpler. Moreover, direct applications are given and remarkable identities are derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.