Abstract

Mehler-Heine asymptotics describe the behavior of orthogonal polynomials near the edges of the interval where the orthogonality measure is supported. For Jacobi polynomials and Laguerre polynomials this asymptotic behavior near the hard edge involves Bessel functions $J_\alpha$. We show that the asymptotic behavior near the endpoint of the interval of (one of) the measures for multiple orthogonal polynomials involves a generalization of the Bessel function. The multiple orthogonal polynomials considered are Jacobi-Angelesco polynomials, Jacobi-Pi\~neiro polynomials, multiple Laguerre polynomials, multiple orthogonal polynomials associated with modified Bessel functions (of the first and second kind), and multiple orthogonal polynomials associated with Meijer $G$-functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.