Abstract

Large megathrust earthquakes like the 2011 Mw 9.0 Tohoku earthquake (Japan) are followed by numerous aftershocks in the subduction zone forearc overlying the seismogenic fault. The aftershocks in the forearc can include normal-faulting events despite the thrust mechanism of the main shock. Postseismic normal faulting has been explained by stress changes induced by the coseismic stress drop along the megathrust. However, details of stress changes in the forearc and aftershock triggering mechanisms remain poorly constrained. Here we use numerical force-balance models combined with Coulomb failure analysis to show that the megathrust stress drop indeed supports normal faulting, but that forearc-wide triggering of aftershocks is feasible within a narrow range of megathrust stress-drop values and forearc stress states only. We determine this range for the Tohoku earthquake and show that the associated stress changes explain the aftershock seismicity in unprecedented detail. In particular, our analysis reveals that ~78% of the aftershocks and ~92% of the seismic moment release occurred in areas where the Tohoku earthquake caused a stress increase, and that the detailed aftershock distribution was also governed by spatial variability in fault strength and forearc topography. Our findings provide new insights into aftershock triggering and help to understand where aftershocks occur after great earthquakes at subduction zones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call