Abstract

We present an analysis of lifetimes and resonances of Earth Trojan Asteroids (ETAs) in the MEGASIM data set. Trojan asteroids co-orbit the Sun with a planet, but remain bound to the Lagrange points, L4 (60° leading the planet) or L5 (60° trailing). In the circular three-body approximation, the stability of a Trojan asteroid depends on the ratio of the host planet mass and the central mass. For the inner planets, the range of stability becomes increasingly small, so perturbations from the planets have made primordial Trojans rare. To date, there have been just two ETAs (2010 TK7 and 2020 XL5), several Mars Trojans, and a Venus Trojan discovered. The estimated lifetimes of the known inner system Trojans are shorter than a million years, suggesting they are interlopers rather than members of a stable and long-lasting population. With the largest ETA n-body simulation to date, we are able to track their survival across a wide initialized parameter space. We find that the remaining fraction of ETAs over time is well fit with a stretched exponential function that, when extrapolated beyond our simulation run time, predicts zero ETAs by 2.33 Gyr. We also show correlations between ETA ejections and the periods of the Milankovitch cycles. Though Earth’s orbital dynamics dominate the instabilities of ETAs, we provide evidence that ETA ejections are linked to resonances found in the variation of the orbital elements of many if not all of the planets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.