Abstract
Impaired production of healthy hematopoietic cells from residual hematopoietic stem cells (HSCs) leads to high mortality in acute myeloid leukemia (AML). Previous studies have identified p21 and Egr3 as intrinsic factors responsible for the growth arrest and differentiation blockade of normal HSCs in leukemia; however, the related extrinsic factors remain unknown. In this study, we found that transforming growth factor β (TGFβ) signaling was upregulated in HSCs from bone marrow of mice with MLL-AF9-induced acute myeloid leukemia (AML) because of excessive production of TGFβ1, especially from megakaryocytes, and overactivation of latent TGFβ1 protein. We also found that SMAD3, a signal transducer of TGFβ1, directly bound to Egr3 and upregulated its expression to arrest proliferation of HSCs. Our study provides evidence for targeting TGFβ1 in AML to rectify normal hematopoiesis defects in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.