Abstract

The ultimate driver of the end-Permian mass extinction is a topic of much debate. Here, we used a multiproxy and paleoclimate modeling approach to establish a unifying theory elucidating the heightened susceptibility of the Pangean world to the prolonged and intensified El Niño events leading to an extinction state. As atmospheric partial pressure of carbon dioxide doubled from about 410 to about 860 ppm (parts per million) in the latest Permian, the meridional overturning circulation collapsed, the Hadley cell contracted, and El Niños intensified. The resultant deforestation, reef demise, and plankton crisis marked the start of a cascading environmental disaster. Reduced carbon sequestration initiated positive feedback, producing a warmer hothouse and, consequently, stronger El Niños. The compounding effects of elevated climate variability and mean state warming led to catastrophic but diachronous terrestrial and marine losses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.