Abstract

Beamformers are a commonly used method for doing source localization from magnetoencephalography (MEG) data. A key ingredient in a beamformer is the estimation of the data covariance matrix. When the noise levels are high, or when there is only a small amount of data available, the data covariance matrix is estimated poorly and the signal-to-noise ratio (SNR) of the beamformer output degrades. One solution to this is to use regularization whereby the diagonal of the covariance matrix is amplified by a pre-specified amount. However, this provides improvements at the expense of a loss in spatial resolution, and the parameter controlling the amount of regularization must be chosen subjectively. In this paper, we introduce a method that provides an adaptive solution to this problem by using a Bayesian Principle Component Analysis (PCA). This provides an estimate of the data covariance matrix to give a data-driven, non-arbitrary solution to the trade-off between the spatial resolution and the SNR of the beamformer output. This also provides a method for determining when the quality of the data covariance estimate maybe under question. We apply the approach to simulated and real MEG data, and demonstrate the way in which it can automatically adapt the regularization to give good performance over a range of noise and signal levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call