Abstract

Myocyte enhancer factor 2C (MEF2C) is a transcription factor that regulates heart and skeletal muscle differentiation and growth. Several protein-encoding genes were identified as targets of this factor; however, little is known about its contribution to the microtranscriptome composition and dynamics in myogenic programs. In this report, we aimed to address this question. Deep sequencing of small RNAs of human muscle cells revealed a set of microRNAs (miRNAs), including several muscle-specific miRNAs, that are sensitive to MEF2C depletion. As expected, in cells with knockdown of MEF2C, we found mostly downregulated miRNAs; nevertheless, as much as one-third of altered miRNAs were upregulated. The majority of these changes are driven by transcription efficiency. Moreover, we found that MEF2C affects nontemplated 3′-end nucleotide addition of miRNAs, mainly oligouridylation. The rate of these modifications is associated with the level of TUT4 which mediates RNA 3′-uridylation. Finally, we found that a quarter of miRNAs which significantly changed upon differentiation of human skeletal myoblasts is inversely altered in MEF2C deficient cells. We concluded that MEF2C is an essential factor regulating both the quantity and quality of the microtranscriptome, leaving an imprint on the stability and perhaps specificity of many miRNAs during the differentiation of muscle cells.

Highlights

  • Myocyte enhancer factor 2C (MEF2C) is a transcription factor that regulates heart and skeletal muscle differentiation and growth

  • In muscle cells with depletion of MEF2C we revealed the impairment of miRNA 3′-uridylation, what is associated with accumulation of short miRNA fragments perhaps as a consequence of their defective removal and as a result of repression of TUT4, a major terminal uridylyltransferase

  • Myoblast differentiation is a multistep process that is governed by a complex network of myogenic factors, mainly myogenic differentiation 1 (MYOD1), myogenic factor 5 (MYF5), myogenin (MYOG), serum response factor (SRF), MEF2s and a number of myomiRs

Read more

Summary

Introduction

Myocyte enhancer factor 2C (MEF2C) is a transcription factor that regulates heart and skeletal muscle differentiation and growth. Myocyte enhancer factor 2 (MEF2) is a family of transcription factors important for the regulation of gene expression in many tissues, including the heart and skeletal muscles. These transcription factors play important roles in development, differentiation, regeneration and adaptation to a wide array of physiological and pathological signals. MEF2 proteins were identified as essential regulators of skeletal muscle-specific transcription and as partners for myogenic differentiation 1 (MYOD1) and other myogenic f­actors[1,2,3]. Uncut gel images are shown in Supplementary information, uncut images section; level of miR-1 and miR-133 was analyzed using

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call