Abstract

Myocyte enhancer factor (MEF)-2 plays a critical role in proliferation, differentiation, and development of various cell types in a tissue specific manner. Four isoforms of MEF-2 (A-D) differentially participate in controlling the cell fate during the developmental phases of cardiac, muscle, vascular, immune and skeletal systems. Through their associations with various cellular factors MEF-2 isoforms can trigger alterations in complex protein networks and modulate various stages of cellular differentiation, proliferation, survival and apoptosis. The role of the MEF-2 family of transcription factors in the development has been investigated in various cell types, and the evolving alterations in this family of transcription factors have resulted in a diverse and wide spectrum of disease phenotypes, ranging from cancer to infection. This review provides a comprehensive account on MEF-2 isoforms (A-D) from their respective localization, signaling, role in development and tumorigenesis as well as their association with histone deacetylases (HDACs), which can be exploited for therapeutic intervention.

Highlights

  • Myocyte enhancer factor (MEF)-2 is a member of the MCM+Agamous+Deficiens+Serum response factor (MADS) box group of transcription factors

  • Similar exercise regimens performed in mice, where muscle-type carnitine palmitoyl l1 (CPT1b) is involved in skeletal muscle mitochondrial β-oxidation, suggest binding of MEF-2A to the Cpt1b promoter, which elevates the growth of the quadricep muscles and development of skeletal muscle; binding activity was decreased with exercise training and increased expression of HDAC5 which correlates to the decrease in MEF-2A activity [178]

  • Due to the high-risk disease characteristics associated with MEF-2 aberrations, the outcomes of treatment are less encouraging, the diversity of disease phenotypes caused by MEF-2 family members are very peculiar and are associated to one or more isoforms, but the treatment regimens still more uncertain

Read more

Summary

Introduction

Myocyte enhancer factor (MEF)-2 is a member of the MCM+Agamous+Deficiens+Serum response factor (MADS) box group of transcription factors. MEF-2 is a transcriptional activator of the VSM phenotype www.oncotarget.com and regulated in an HDAC-dependent manner, and suppression of CaMKIIδ2 decreased the DNA binding affinity of MEF-2 and down regulation of its target genes Nur77 and MCP1n [90]. Studies have shown close correlation between p38 MAPKs, calcium-calmodulin dependent protein kinases and calcineurin signaling pathways that activate the expression of myogenesis via activating MEF2 transcription factors [112].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call