Abstract

The article presents a methodological approach to studying iterative processes in the school course of geometry, by the example of constructing a Koch snowflake fractal curve and calculating a few characteristics of it. The interactive creative environment 1C:MathKit is chosen to visualize the method discussed. By performing repetitive constructions and algebraic calculations using ICT tools, students acquire a steady skill of work with geometric objects of various levels of complexity, comprehend the possibilities of mathematical interpretation of iterative processes in practice, and learn how to understand the dialectical unity between finite and infinite parameters of flat geometric figures. When students are getting familiar with such contradictory concepts and categories, that replenishes their experience of worldview comprehension of the subject areas they study through the concept of “big ideas”. The latter allows them to take a fresh look at the processes in the world around. The article is a matter of interest to schoolteachers of computer science and mathematics, as well as university scholars who teach the course “Concepts of modern natural sciences”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.