Abstract

To address the problem of low prediction accuracy of precipitation time series data, an improved overall mean empirical modal decomposition–prediction–reconstruction model (MDPRM) is constructed in this paper. First, the non-stationary precipitation time series are decomposed into multiple decomposition terms by the improved overall mean empirical modal decomposition (MEEMD). Then, a particle swarm optimization support vector machine (PSO-SVM) and convolutional neural network (CNN) and recurrent neural network (RNN) models are used to make predictions according to the characteristics of different decomposition terms. Finally, the prediction results of each decomposition term are superimposed and reconstructed to form the final prediction results. In addition, the application is carried out with the summer precipitation in the Wujiang River basin of Guizhou Province from 1961 to 2018, using the first 38 years of data to train MDPRM and the last 20 years of data to test MDPRM, and comparing with a feedback neural network (BP), a support vector machine (SVM), a particle swarm optimization support vector machine (PSO-SVM), a convolutional neural network (CNN), and a recurrent neural network (RNN), etc. The results show that the mean relative error (MAPE) of the proposed MDPRM is reduced from 0.31 to 0.09, the root mean square error (RMSE) is reduced from 0.56 to 0.30, and the consistency index (α) is significantly improved from 0.33 to 0.86, which has a higher prediction accuracy. Finally, the trained MDPRM predicts the average summer precipitation in the Wujiang River basin from 2019 to 2028 to be 466.42 mm, the minimum precipitation in 2020 to be 440.94 mm, and the maximum precipitation in 2024 to be 497.94 mm. Based on the prediction results, the agricultural drought level is evaluated using the Z index, which indicates that the summer is normal in the 10-year period. The study provides technical support for the effective guidance of regional water resources’ allocation and scheduling and drought mitigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.