Abstract
This work introduces the “MedTransCluster” framework, a novel approach to medical image clustering in chest radiography through the application of transfer learning, leveraging the capabilities of pre-trained deep learning models. Our evaluation encompassed a variety of neural networks, considering their adaptability to the nuances of medical imaging data. The study incorporated four renowned clustering algorithms and an expanded set of evaluation metrics, offering a comprehensive comparison and a refined analysis of these models’ ability to cluster complex diagnostic features. Notably, EfficientNetB0 coupled with DBSCAN clustering algorithm achieved a silhouette score of 0.924131, and ResNet152 with KMeans displayed a Calinski Harabasz score of 9655.213964, indicating their superior proficiency in capturing the intricacies of medical features. These results emphasize the critical importance of model refinement within the healthcare imaging sphere and underscore the potential of methodologies like MedTransCluster in enhancing diagnostic accuracy and patient outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.