Abstract
Super-resolution (SR) in medical imaging is an emerging application in medical imaging due to the needs of high quality images acquired with limited radiation dose, such as low dose Computer Tomography (CT), low field magnetic resonance imaging (MRI). However, because of its complexity and higher visual requirements of medical images, SR is still a challenging task in medical imaging. In this study, we developed a deep learning based method called Medical Images SR using Generative Adversarial Networks (MedSRGAN) for SR in medical imaging. A novel convolutional neural network, Residual Whole Map Attention Network (RWMAN) was developed as the generator network for our MedSRGAN in extracting the useful information through different channels, as well as paying more attention on meaningful regions. In addition, a weighted sum of content loss, adversarial loss, and adversarial feature loss were fused to form a multi-task loss function during the MedSRGAN training. 242 thoracic CT scans and 110 brain MRI scans were collected for training and evaluation of MedSRGAN. The results showed that MedSRGAN not only preserves more texture details but also generates more realistic patterns on reconstructed SR images. A mean opinion score (MOS) test on CT slices scored by five experienced radiologists demonstrates the efficiency of our methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.