Abstract

We present MedSim, a novel semantic SIMilarity method based on public well-established bio-MEDical knowledge graphs (KGs) and large-scale corpus, to study the therapeutic substitution of antibiotics. Besides hierarchy and corpus of KGs, MedSim further interprets medicine characteristics by constructing multi-dimensional medicine-specific feature vectors. Dataset of 528 antibiotic pairs scored by doctors is applied for evaluation and MedSim has produced statistically significant improvement over other semantic similarity methods. Furthermore, some promising applications of MedSim in drug substitution and drug abuse prevention are presented in case study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.